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The geometry of nonconservative mechanical systems, where the external force field depends on both position and velocity, was rigorously investigated by Klein [5] and Godbillon [4]. The dynamical system of a nonconserva​tive mechanical systems is a second order vector field, or a semispray, and it has been uniquely determined by Godbillon [4] using the symplectic struc​ture and the energy of the Lagrange space and the external force field. Using the external force field of the nonconservative mechanical system, Klein [5] introduces a force tensor, which is a second rank skew symmetric tensor. 
In this paper we extend the geometric investigation of nonconservative mechanical systems, using the associated evolution nonlinear connection. We show that the evolution nonlinear connection is uniquely determined by two compatibility conditions with the metric structure and the symplectic struc​ture of the Lagrange space, [3]. The covariant derivative of the Lagrange metric tensor with respect to the evolution nonlinear connection is a second rank symmetric tensor, which uniquely determines the symmetric part of the connection. The difference between the symplectic structure of the Lagrange space and the almost-symplectic structure of the nonconservative mechanical system is the force tensor introduced by Klein [5], and used recently by Miron [6]. The force tensor, which is the vertical differential of the external force, uniquely determines the skew-symmetric part of the evolution nonlinear connection. The force tensor vanishes in the work of Bloch [2] and therefore the symplectic geometry of the nonconservative mechanical system coincides with the symplectic geometry of the underlying Lagrange space as it has been developed by Abraham and Marsden [1].
One can determine the equations of evolution either from a Lagrangian function by writing these equations as the Euler-Lagrange equations or by using a Legendre transformation, determining a Hamiltonian function and considering the Hamilton equations. One can use then Lagrange or Hamilton geometries for a geometric theory of the evolution problem. A geometrical approach of this problem on the phase space for the Riemannian case has been proposed by Munoz-Lecanda and Yaniz-Fernandez, [9]. This theory has been developed recently, for the case of Finsler and Lagrange spaces in [3] and [7]. For a mathematical model of the geomagnetic field, which has aperiodic reversals, Yajima and Nagahama proposed recently in [10] a math​ematical model that corresponds to a nonlinear dynamical system (Rikitake system). This way the chaotic behavior of the system is expressed with the above mentioned geometric and topologic invariants.
In this paper we study dynamical systems on the phase space that are defined by systems of second order differential equations that result from the theory of scleronomic, holonomic mechanical systems given by Lagrange equa​tions when the external forces are a priori given.
The main idea is to determine a semispray S, whose integral curves give the evolution curves. We shall determine the evolution semispray of a mechanical system by using the symplectic structure of the associated Lagrangian function and the external force field. The geometry of the semispray will determine the geometry of the associated dynamical system on the phase space.
We will study these problems first for a Finsler space Fn = (M,F)  and a Lagrange space Ln = (M,L). [7].
If the Lagrangian function is not homogeneous of second degree with respect to the velocity-coordinates, which is the case in the Riemannian and Finslerian context, the energy of the system is different from the Lagrangian function and the evolution curves (solution of the Euler-Lagrange equations) are different from the horizontal curves of the system. Therefore, we shall study the variation of both energy and Lagrangian function along the evolu​tion curves and horizontal curves. 
Canonic nonlinear connection of a Lagrange manifold is the unique non​linear connection that is metric and symplectic. Conditions by which the evolution nonlinear connection is either metric or symplectic are determined in terms of the symmetric or skew-symmetric part of a (1,1)-type tensor field associated with the external force field. 
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